


Sparsest Cuts

Let G = (V, E) be an undirected graph

Definition (Sparsity of a Cut)

_ IE‘:f(u,v)eE [|15(u) - 15(V)’]
E(uv)ev [[1s(u) — Ls(v)[]

o(S):

Definition (Sparsity of a Graph)

G) = i
AE) SgV:rE;Iénw,syéva(S)

For a d-regular graph G, o(S) = %
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Edge Expansion

Let G be a d-regular undirected graph

Definition (Edge Expansion of a Set)

Definition (Edge Expansion of a Graph)

¢(G):= _ min  §(S)

S:ISI<|vi/2
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Relation between Sparsity and Edge Expansion

For a regular graph G,

Proof is trivial
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Expander Graph Family

Definition (Family of Expander Graphs)

Let {G}n>q be a family of d-regular graphs such that ¢(G,) > ¢.
This family is called a family of expander graphs.
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Connectivity of Expanders

Let ¢(G) > ¢ > 0. Consider any 0 < £ < ¢. On removal of any
¢ |E| edges from G, there exists a connected component of G of
size at least (1 —e/2¢) |V/.

o Let E’ be any set of at most ¢ |E| edges in G

o Let (,..., G be the connected components of G’ (the graph
obtained from G by removal of edges E’) in non-decreasing
order

° |fyc1|<|w/2-
|E'| > ZE G, G) ZE(C,,V G)

'#J
Z\Cw—

This is impossible

d|V|¢
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Proof Continued...

o If |G| > |V]|/2:

|E'| > E(C,V — G) > do |V — G
d|V
— |V-q|< & V]

2do
Gl > (1-¢/2¢) |V

Hence,

o = =
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Hermitian Matrices

o (x,y) =x"y =3 Xy
o (x,x) = |x[|2
@ A Hermitian matrix M € C"*" satisfies M = M*

@ If Mx = Ax then X is the eigenvalue and x is the
corresponding eigenvector
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Eigenvalues of Hermitian Matrices

All eigenvalues of a Hermitian M are real \

@ Suppose A is an eigenvalue and x is its corresponding
eigenvector

e Consider (Mx, x) = (x, M*x) = (x, Mx)
@ Note that (Mx, x) = A(x, x) and {x, Mx) = \(x, x)
@ Hence, A = \
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Eigenvectors of Hermitian Matrices are Orthogonal

Let x and y be eigenvectors of a Hermitian M corresponding to two
different eigenvalues. Then, (x,y) = 0.

@ Let X and )\ be eigenvalues corresponding to x and y
respectively

e Note that (Mx,y) = A(x,y)
e Note that (x, My) = X (x,y)
@ Since A # X, we have {x,y) =0
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Variational Characterization of Eigenvalues

Theorem (Courant-Fischer Theorem)

Let M € R"™" be a symmetric matrix. Let \y <--- < A\, be a
sequence of non-decreasing eigenvalues with multiplicities. Let
x1,...,X; be the eigenvectors corresponding to A1, ..., \;. Then

(x, Mx)

Ak+1 = min
xER"—{0}: xL(x1,....xk) <X,X>
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Proof

@ Using Spectral Theorem: The eigenvectors form an
orthonormal basis
o If x L (x1,...,xk) then x = Zn>,—>k aiX;
@ Then we have:
2
x, Mx o AT
b M _ ik e

<X7X> Zi>k a;

(x, Mx)
max -~——"
dim(V)=k xeV—{0} (x,x)

Ak = min
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Basics of Spectral Graph Theory

Definition (Laplacian)

Let G be a d-regular undirected graph with adjacency matrix A.
The normalized Laplacian is defined to be:

Note that (x, Lx) = % 2 (uvyee(Xu — Xy )?
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Graph Properties from Laplacian

Suppose the eigenvalues of L are A\ <--- < \,. Then:
o )\1:Oand)\n<2

@ A\, =0 ifand only if G has > k connected components

@ )\, =2 if and only if a connected component of G is bipartite
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Proof

Note that (x, Lx) > 0, for all x e R" — 0
Note that a constant vector is a eigenvector with eigenvalue 0
Therefore, Ay =0

If Ax = 0 then there exists a vector space V such that for any
x € V we have >, yep(xu — x,)2 =0

So, x is constant within each component

(]

k = dim(V) < number of connected components in G

Converse if easy to see using constant functions over each
connected component
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Proof Continued

Note that 2(x, x) — (x, Lx) = %Z(UN)E,:-(XU +x,)?
So, A\, <2

Suppose A\, =2

Consider x as its corresponding eigenvector

There exists an edge (u, v) such that x, = a and x, = —a
Let A be the set {v: x, = a}

Let B be the set {v: x, = —a}

Note that no edge connects two vertices within A or two
vertices within B

Note that no edge connects any vertex in A with a vertex
outside B

Note that no edge connects any vertex in B with a vertex
outside A

(A, B) form a connected component and is bi-partite
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