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Sparsest Cuts

Let G = (V ,E ) be an undirected graph

Definition (Sparsity of a Cut)

σ(S) :=
E(u,v)∈E [|1S(u)− 1S(v)|]
E(u,v)∈V 2 [|1S(u)− 1S(v)|]

Definition (Sparsity of a Graph)

σ(G ) := min
S⊆V : S 6=∅,S 6=V

σ(S)

For a d-regular graph G , σ(S) = E(S,V−S)
d |S||V−S |/|V |
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Edge Expansion

Let G be a d-regular undirected graph

Definition (Edge Expansion of a Set)

φ(S) :=
E (S ,V − S)

d |S |

Definition (Edge Expansion of a Graph)

φ(G ) := min
S : |S |6|V |/2

φ(S)
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Relation between Sparsity and Edge Expansion

Lemma
For a regular graph G ,

1
2
σ(G ) 6 φ(G ) 6 σ(G )

Proof is trivial
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Expander Graph Family

Definition (Family of Expander Graphs)

Let {Gn}n>d be a family of d-regular graphs such that φ(Gn) > φ.
This family is called a family of expander graphs.

Lecture 09: Spectral Graph Theory



Connectivity of Expanders

Lemma
Let φ(G ) > φ > 0. Consider any 0 < ε < φ. On removal of any
ε |E | edges from G , there exists a connected component of G of
size at least (1− ε/2φ) |V |.

Let E ′ be any set of at most ε |E | edges in G

Let C1, . . . ,Ct be the connected components of G ′ (the graph
obtained from G by removal of edges E ′) in non-decreasing
order
If |C1| 6 |V | /2:∣∣E ′∣∣ > 1

2

∑
i 6=j

E (Ci ,Cj) =
1
2

∑
i

E (Ci ,V − Ci )

>
1
2

∑
i

|Ci |φ =
d |V |φ

2

This is impossible
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Proof Continued...

If |C1| > |V | /2: ∣∣E ′∣∣ > E(C1,V − C1) > dφ |V − C1|

=⇒ |V − C1| 6
εd |V |
2dφ

Hence, |C1| > (1− ε/2φ) |V |
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Hermitian Matrices

〈x , y〉 := x∗y =
∑

i xiyi

〈x , x〉 = ‖x‖ 2
A Hermitian matrix M ∈ Cn×n satisfies M = M∗

If Mx = λx then λ is the eigenvalue and x is the
corresponding eigenvector
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Eigenvalues of Hermitian Matrices

Lemma
All eigenvalues of a Hermitian M are real

Suppose λ is an eigenvalue and x is its corresponding
eigenvector
Consider 〈Mx , x〉 = 〈x ,M∗x〉 = 〈x ,Mx〉
Note that 〈Mx , x〉 = λ〈x , x〉 and 〈x ,Mx〉 = λ〈x , x〉
Hence, λ = λ
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Eigenvectors of Hermitian Matrices are Orthogonal

Lemma
Let x and y be eigenvectors of a Hermitian M corresponding to two
different eigenvalues. Then, 〈x , y〉 = 0.

Let λ and λ′ be eigenvalues corresponding to x and y
respectively
Note that 〈Mx , y〉 = λ〈x , y〉
Note that 〈x ,My〉 = λ′〈x , y〉
Since λ 6= λ′, we have 〈x , y〉 = 0
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Variational Characterization of Eigenvalues

Theorem (Courant-Fischer Theorem)

Let M ∈ Rn×n be a symmetric matrix. Let λ1 6 · · · 6 λn be a
sequence of non-decreasing eigenvalues with multiplicities. Let
x1, . . . , xi be the eigenvectors corresponding to λ1, . . . , λi . Then

λk+1 = min
x∈Rn−{0} : x⊥〈x1,...,xk 〉

〈x ,Mx〉
〈x , x〉
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Proof

Using Spectral Theorem: The eigenvectors form an
orthonormal basis
If x ⊥ 〈x1, . . . , xk〉 then x =

∑
n>i>k aixi

Then we have:

〈x ,Mx〉
〈x , x〉

=

∑
i>k a

2
i λi∑

i>k a
2
i

> λk+1

Corollary
If λ1 6 · · · 6 λn then

λk = min
dim(V )=k

max
x∈V−{0}

〈x ,Mx〉
〈x , x〉

Lecture 09: Spectral Graph Theory



Basics of Spectral Graph Theory

Definition (Laplacian)

Let G be a d-regular undirected graph with adjacency matrix A.
The normalized Laplacian is defined to be:

L := I − 1
d
· A

Note that 〈x , Lx〉 = 1
d

∑
(u,v)∈E (xu − xv )

2
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Graph Properties from Laplacian

Theorem
Suppose the eigenvalues of L are λ1 6 · · · 6 λn. Then:

λ1 = 0 and λn 6 2
λk = 0 if and only if G has > k connected components
λn = 2 if and only if a connected component of G is bipartite
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Proof

Note that 〈x , Lx〉 > 0, for all x ∈ Rn − 0
Note that a constant vector is a eigenvector with eigenvalue 0
Therefore, λ1 = 0

If λk = 0 then there exists a vector space V such that for any
x ∈ V we have

∑
(u,v)∈E (xu − xv )

2 = 0
So, x is constant within each component
k = dim(V ) 6 number of connected components in G

Converse if easy to see using constant functions over each
connected component
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Proof Continued

Note that 2〈x , x〉 − 〈x , Lx〉 = 1
d

∑
(u,v)∈E (xu + xv )

2

So, λn 6 2

Suppose λn = 2
Consider x as its corresponding eigenvector
There exists an edge (u, v) such that xu = a and xv = −a
Let A be the set {v : xv = a}
Let B be the set {v : xv = −a}
Note that no edge connects two vertices within A or two
vertices within B

Note that no edge connects any vertex in A with a vertex
outside B

Note that no edge connects any vertex in B with a vertex
outside A

(A,B) form a connected component and is bi-partite
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