Lecture 09: Spectral Graph Theory

Sparsest Cuts

Let $G=(V, E)$ be an undirected graph

Definition (Sparsity of a Cut)

$$
\sigma(S):=\frac{\mathbb{E}_{(u, v) \in E}\left[\left|1_{S}(u)-1_{S}(v)\right|\right]}{\mathbb{E}_{(u, v) \in V^{2}}\left[\left|1_{S}(u)-1_{S}(v)\right|\right]}
$$

Definition (Sparsity of a Graph)

$$
\sigma(G):=\min _{S \subseteq V: S \neq \emptyset, S \neq V} \sigma(S)
$$

For a d-regular graph $G, \sigma(S)=\frac{E(S, V-S)}{d|S||V-S| /|V|}$

Edge Expansion

Let G be a d-regular undirected graph

Definition (Edge Expansion of a Set)

$$
\phi(S):=\frac{E(S, V-S)}{d|S|}
$$

Definition (Edge Expansion of a Graph)

$$
\phi(G):=\min _{S:|S| \leqslant|V| / 2} \phi(S)
$$

Lemma

For a regular graph G,

$$
\frac{1}{2} \sigma(G) \leqslant \phi(G) \leqslant \sigma(G)
$$

Proof is trivial

Expander Graph Family

Definition (Family of Expander Graphs)

Let $\left\{G_{n}\right\}_{n>d}$ be a family of d-regular graphs such that $\phi\left(G_{n}\right) \geqslant \phi$. This family is called a family of expander graphs.

Connectivity of Expanders

Lemma

Let $\phi(G) \geqslant \phi>0$. Consider any $0<\varepsilon<\phi$. On removal of any $\varepsilon|E|$ edges from G, there exists a connected component of G of size at least $(1-\varepsilon / 2 \phi)|V|$.

- Let E^{\prime} be any set of at most $\varepsilon|E|$ edges in G
- Let C_{1}, \ldots, C_{t} be the connected components of G^{\prime} (the graph obtained from G by removal of edges E^{\prime}) in non-decreasing order
- If $\left|C_{1}\right| \leqslant|V| / 2$:

$$
\begin{aligned}
\left|E^{\prime}\right| & \geqslant \frac{1}{2} \sum_{i \neq j} E\left(C_{i}, C_{j}\right)=\frac{1}{2} \sum_{i} E\left(C_{i}, V-C_{i}\right) \\
& \geqslant \frac{1}{2} \sum_{i}\left|C_{i}\right| \phi=\frac{d|V| \phi}{2}
\end{aligned}
$$

This is impossible

- If $\left|C_{1}\right|>|V| / 2$:

$$
\begin{aligned}
\left|E^{\prime}\right| & \geqslant \mathbb{E}\left(C_{1}, V-C_{1}\right) \geqslant d \phi\left|V-C_{1}\right| \\
\Longrightarrow\left|V-C_{1}\right| & \leqslant \frac{\varepsilon d|V|}{2 d \phi}
\end{aligned}
$$

Hence, $\left|C_{1}\right| \geqslant(1-\varepsilon / 2 \phi)|V|$

Hermitian Matrices

- $\langle x, y\rangle:=x^{*} y=\sum_{i} \overline{x_{i}} y_{i}$
- $\langle x, x\rangle=\|x\| 2$
- A Hermitian matrix $M \in \mathbb{C}^{n \times n}$ satisfies $M=M^{*}$
- If $M x=\lambda x$ then λ is the eigenvalue and x is the corresponding eigenvector

Lemma

All eigenvalues of a Hermitian M are real

- Suppose λ is an eigenvalue and x is its corresponding eigenvector
- Consider $\langle M x, x\rangle=\left\langle x, M^{*} x\right\rangle=\langle x, M x\rangle$
- Note that $\langle M x, x\rangle=\bar{\lambda}\langle x, x\rangle$ and $\langle x, M x\rangle=\lambda\langle x, x\rangle$
- Hence, $\bar{\lambda}=\lambda$

Lemma

Let x and y be eigenvectors of a Hermitian M corresponding to two different eigenvalues. Then, $\langle x, y\rangle=0$.

- Let λ and λ^{\prime} be eigenvalues corresponding to x and y respectively
- Note that $\langle M x, y\rangle=\lambda\langle x, y\rangle$
- Note that $\langle x, M y\rangle=\lambda^{\prime}\langle x, y\rangle$
- Since $\lambda \neq \lambda^{\prime}$, we have $\langle x, y\rangle=0$

Variational Characterization of Eigenvalues

Theorem (Courant-Fischer Theorem)

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ be a sequence of non-decreasing eigenvalues with multiplicities. Let x_{1}, \ldots, x_{i} be the eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{i}$. Then

$$
\lambda_{k+1}=\min _{x \in \mathbb{R}^{n}-\{0\}: x \perp\left\langle x_{1}, \ldots, x_{k}\right\rangle} \frac{\langle x, M x\rangle}{\langle x, x\rangle}
$$

- Using Spectral Theorem: The eigenvectors form an orthonormal basis
- If $x \perp\left\langle x_{1}, \ldots, x_{k}\right\rangle$ then $x=\sum_{n \geqslant i>k} a_{i} x_{i}$
- Then we have:

$$
\frac{\langle x, M x\rangle}{\langle x, x\rangle}=\frac{\sum_{i>k} a_{i}^{2} \lambda_{i}}{\sum_{i>k} a_{i}^{2}} \geqslant \lambda_{k+1}
$$

Corollary

If $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ then

$$
\lambda_{k}=\min _{\operatorname{dim}(V)=k} \max _{x \in V-\{0\}} \frac{\langle x, M x\rangle}{\langle x, x\rangle}
$$

Basics of Spectral Graph Theory

Definition (Laplacian)

Let G be a d-regular undirected graph with adjacency matrix A. The normalized Laplacian is defined to be:

$$
L:=I-\frac{1}{d} \cdot A
$$

Note that $\langle x, L x\rangle=\frac{1}{d} \sum_{(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}$

Graph Properties from Laplacian

Theorem

Suppose the eigenvalues of L are $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$. Then:

- $\lambda_{1}=0$ and $\lambda_{n} \leqslant 2$
- $\lambda_{k}=0$ if and only if G has $\geqslant k$ connected components
- $\lambda_{n}=2$ if and only if a connected component of G is bipartite
- Note that $\langle x, L x\rangle \geqslant 0$, for all $x \in \mathbb{R}^{n}-0$
- Note that a constant vector is a eigenvector with eigenvalue 0
- Therefore, $\lambda_{1}=0$
- If $\lambda_{k}=0$ then there exists a vector space V such that for any $x \in V$ we have $\sum_{(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}=0$
- So, x is constant within each component
- $k=\operatorname{dim}(V) \leqslant$ number of connected components in G
- Converse if easy to see using constant functions over each connected component
- Note that $2\langle x, x\rangle-\langle x, L x\rangle=\frac{1}{d} \sum_{(u, v) \in E}\left(x_{u}+x_{v}\right)^{2}$
- So, $\lambda_{n} \leqslant 2$
- Suppose $\lambda_{n}=2$
- Consider x as its corresponding eigenvector
- There exists an edge (u, v) such that $x_{u}=a$ and $x_{v}=-a$
- Let A be the set $\left\{v: x_{v}=a\right\}$
- Let B be the set $\left\{v: x_{v}=-a\right\}$
- Note that no edge connects two vertices within A or two vertices within B
- Note that no edge connects any vertex in A with a vertex outside B
- Note that no edge connects any vertex in B with a vertex outside A
- (A, B) form a connected component and is bi-partite

